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Neocarzinostatin (NCS) is a member of a group of antitumor antibiotics possessing 
ene-diyne structures that bind to DNA in a specific manner and are converted to a 
diradical species that directly attacks DNA sugars. The biologically active component 
is a labile non-protein chromophore (NCS-Chrom) composed of three discrete struc- 
tural components: 1 )  a substituted naphthoic acid moiety, 2 )  an amino sugar, and 3) 
a novel, highly strained bicyclo [7.3.0] dodecadiendiyne epoxide with two acetylenic 
bonds. NCS-Chrom binds to DNA by intercalating of its naphthoate moiety and 
electrostatic interaction of its aminosugar in the minor groove of duplex DNA. The 
drug prefers 5’-d(GNT)-3’ sequences. intercalating between G and N and cleaving 
mainly at T residues. DNA-bound NCS-Chrom is activated by thiol (or sodium 
borohydride) by adduction at C-I2 of the chromophore bicyclic core, opeining of the 
epoxide, and rearrangement of the diyne-ene system to form a C-2, C-6 diradical 
species. 

DNA damage produced by NCS-Chrom consists mainly of 1 )  direct single strand 
breaks, 2) base release, 3) alkali-labile breaks, and 4) covalent adducts between the 
drug and the DNA sugar. The free radical form of NCS-Chrom abstracts a hydrogen 
atom from C-5’ of deoxyribose of mainly T residues in DNA to form a carbon- 
centered radical at C-5’. Dioxygen adds to the radical to form a peroxyl radical 
intermediate that mainly ( >  80%) is converted to a strand break with a 3’ phosphate 
and a 5’ nucleoside 5’-aldehyde; less than 20% of the breaks have phosphate at both 
ends due to the cleavage between C-4’ and C-5’ of an oxyradical species (at C-5’) to 
form 3’-formyl phosphate-ended DNA. an energy-rich DNA damage intermediate 
and formyl donor. In the absence of dioxygen, instead of strand-breaks, NCS-Chrom 
itself forms a stable covalent adduct at C-5’ of the deoxyribose. When the radiation 
sensitizer misonidazole substitutes for dioxygen, strand breaks have phosphates at 
both ends and formyl - P-ended DNA is the main sugar damage intermediate. A 
mechanism involving a nitroxide radical adduct intermediate and oxyradical forma- 
tion at C-5’ has been proposed in the generation of this lesion. 

NCS-Chrom also induces base release with the formation of alkali-labile. abasic 
sites in the DNA. Abasic lesions, which can account for up to 25% of the total strand 
breaks, occur with an especially high frequency at C residues in d(AGC) sequences 
and have an atypical response to enzymatic or chemical hydrolysis when compared 
with abasic sites generated by acid-induced depurination. These lesions are mutagenic 
and when they involve the C residue in d(AGC), are responsible for GC to AT 
transitions. At such sequences the free radical form of NCS-Chrom abstracts a 
hydrogen atom from C-I’ of the deoxyribose of the C residue. Oxidation of the 
primary radical at C- I ’ generates 2-deoxyribonolactone with cytosine release. 

All abasic sites at the C residue in d(AGC) are accompanied by a direct strand 
break at the T residue on the complementary strand two nucleotides to the 3’-side (i.e., 
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opposite the A in d(AGC)), but not all direct strand breaks have closely opposed 
abasic sites. If in the repair of the bi-stranded lesions the first event is an endonucleo- 
lytic cleavage at  the abasic site, this would generate a double strand break, a possibly 
lethal event; if the strand break is repaired first by a process involving gap generation 
and filling, an incorrect nucleotide would likely be placed opposite the abasic site on 
the complementary strand during gap filling to generate a mutagenic lesion. This 
novel type of mutagenesis does not involve DNA replication. These results raise the 
possibility that related bi-stranded lesions may also be caused by ionizing radiation 
with similar biological consequences. 

It is proposed that the bi-stranded lesions are formed when NCS-Chrom diradical 
is appropriately positioned in the minor groove of the DNA so that it can concertedly 
attack C-5’ in one strand and C-1’ of the deoxyribose two nucleotides to the 3’-side 
in the complementary strand. Support for such a mechanism comes from recent 
’H-NMR and mass spectroscopic studies showing that DNA is the probable source 
of the two hydrogen atoms abstracted by NCS-Chrom into the C-2 and C-6 positions 
of its bi-cyclic core. Further, it is shown that while deuterium from borodeuteride is 
incorporated into C-2 and C-6 of NCS-Chrom in the absence of DNA, no deuterium 
from the thiol sulfhydryl is so incorporated. This result raises the possibility that 
carbon-bound hydrogen of thiol and not the exchangeable sulfhydryl hydrogen is 
abstracted by the free radical form of NCS-Chrom in the absence of DNA. 
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